1、“三线八角”:两条直线被第三条直线所截而成的八个角。其中,
同位角:位置相同,及同旁和同规;
内错角:内部,两旁;
同旁内角:内部,同旁。
2、平行线的判定方法:
1)同位角相等,两直线平行
2)内错角相等,两直线平行
3)同旁内角互补,两直线平行
3、平行线的性质:
1)两直线平行,同位角相等
2)两直线平行,内错角相等
3)两直线平行,同旁内角互补
4、三角形的分类:
1)按角分:锐角三角形、直角三角形、钝角三角形
2)按边分:等腰三角形、不等边三角形
5、三角形的性质:
1)三角形中任意两边之和大于第三边,任意两边只差小于第三边
2)三角形内角和为180o
3)三角形外角等于与之不相邻的两个内角的和
6、三角形中的主要线段:
1)三角形的中位线:连接三角形两边中点的线段
中位线性质:中位线平行于第三边,且等于第三边的一半。
2)三角形的中线、高线、角平分线都是线段
7、等腰三角形的性质和判定:
1)等腰三角形的两个底角相等
2)等腰三角形底边上的高、中线、顶角的角平分线互相重合,简称三线合一
3)有两个角相等的三角形是等腰三角形
8、等边三角形的性质和判定:
1)等边三角形每个角都等于60o,同样具有三线合一的性质
2)三个角相等的三角形是等边三角形;三边相等的三角形是等边三角形;一个角等于60o的等腰三角形是等边三角形
9、直角三角形的性质和判定:
1)直角三角形两个锐角和为90o(互余)
2)直角三角形中30o所对的直角边等于斜边的一半
3)直角三角形中,斜边的中线等于斜边的一半
4)勾股定理:直角三角形中,两直角边的平方和等于斜边的平方
5)勾股定理的逆定理:若一个三角形中,有两边的平方和等于第三边的平方,则这个三角形是直角三角形
10、全等三角形:
1)对应边相等,对应角相等的三角形叫全等三角形
2)全等三角形的判定方法:SSS、SAS、ASA、AAS、HL
【观察这五种方法发现,要证三角形全等,至少要有一组相等的边,因此在应用是要养成先找边的习惯】
3)全等三角形的性质:全等三角形的对应边、对应角、面积、周长、对应高、对应中线、对应角平分线都相等
11、分析、证明几何题的常用方法:
1)综合法(由因导果):从命题的题设出发,通过一系列的有关定义、公理、定理的应用,逐步向前推进,知道问题解决
2)分析法(执果索因):从命题的结论出发,不断寻找使结论成立的条件,直到已知条件
3)两头凑法:将分析法和综合法合并使用,比较起来,分析法利于思考,综合法适宜表达,因此在实际思考问题时,可合并使用灵活处理。以利于缩短题设与结论间的距离,最后达到完全沟通。
网站首页
- 地市资讯
- 法制金融
- 科教文卫
- 乡村振兴
- 体育旅游
- 河南要闻
- 舆情焦点
- 智库访谈
- 关于我们
- 信息举报
网站不良信息举报邮箱:dxyqyjy@163.com 举报电话:0371-55550100
违法和不良信息举报中心 | 河南省互联网违法和不良信息举报中心
违法和不良信息举报受理和处置管理办法
未经本站书面特别授权,请勿转载或建立镜像